This is an old revision of the document!

Bounded distributive lattices

Abbreviation: BDLat


A bounded distributive lattice is a structure $\mathbf{L}=\left\langle L,\vee ,0,\wedge ,1\right\rangle $ such that

$\left\langle L,\vee ,\wedge \right\rangle $ is a distributive lattice

$0$ is the least element: $0\leq x$

$1$ is the greatest element: $x\leq 1$


Let $\mathbf{L}$ and $\mathbf{M}$ be bounded distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(1)=1$


Example 1: $\langle \mathcal P(S), \cup, \emptyset, \cap, S\rangle$, the collection of subsets of a set $S$, with union, empty set, intersection, and the whole set $S$.

Basic results


Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &3\\ \end{array}$ $\begin{array}{lr} f(6)= &5\\ f(7)= &8\\ f(8)= &15\\ f(9)= &26\\ f(10)= &47\\ \end{array}$ $\begin{array}{lr} f(11)= &82\\ f(12)= &151\\ f(13)= &269\\ f(14)= &494\\ f(15)= &891\\ \end{array}$ $\begin{array}{lr} f(16)= &1639\\ f(17)= &2978\\ f(18)= &5483\\ f(19)= &10006\\ f(20)= &18428\\ \end{array}$

Values known up to size 49 1).




1) Marcel Erne, Jobst Heitzig and J\ā€¯urgen Reinhold, On the number of distributive lattices, Electron. J. Combin., 9, 2002, Research Paper 24, 23 pp. (electronic)