# Differences

This shows you the differences between two versions of the page.

commutative_regular_rings [2010/07/29 15:46] (current)
Line 1: Line 1:
+=====Commutative regular rings=====
+Abbreviation: **CRRng**
+====Definition====
+A \emph{commutative regular ring} is a [[regular rings]] $\mathbf{R}=\langle R,+,-,0,\cdot,1 +\rangle$ such that
+$\cdot$ is commutative:  $x\cdot y=y\cdot x$
+
+==Morphisms==
+Let $\mathbf{R}$ and $\mathbf{S}$ be commutative regular rings. A morphism from $\mathbf{R}$
+to $\mathbf{S}$ is a function $h:R\rightarrow S$ that is a homomorphism:
+
+$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$
+====Examples====
+Example 1:
+
+====Basic results====
+
+====Properties====
+^[[Classtype]]  |first-order |
+^[[Equational theory]]  | |
+^[[Quasiequational theory]]  | |
+^[[First-order theory]]  | |
+^[[Locally finite]]  |no |
+^[[Residual size]]  |unbounded |
+^[[Congruence distributive]]  | |
+^[[Congruence modular]]  |yes |
+^[[Congruence n-permutable]]  |yes, $n=2$ |
+^[[Congruence regular]]  |yes |
+^[[Congruence uniform]]  |yes |
+^[[Congruence extension property]]  | |
+^[[Definable principal congruences]]  | |
+^[[Equationally def. pr. cong.]]  | |
+^[[Amalgamation property]]  | |
+^[[Strong amalgamation property]]  | |
+^[[Epimorphisms are surjective]]  | |
+====Finite members====
+
+$\begin{array}{lr} +f(1)= &1\\ +f(2)= &\\ +f(3)= &\\ +f(4)= &\\ +f(5)= &\\ +f(6)= &\\ +\end{array}$
+
+====Subclasses====
+[[Fields]]
+
+====Superclasses====
+[[Commutative rings with identity]]
+
+
+====References====
+
+[(Ln19xx>
+)]

##### Toolbox 