Table of Contents

## Directoids

Abbreviation: **Dtoid**

### Definition

A ** directoid** is a structure $\mathbf{A}=\langle A,\cdot
\rangle $, where $\cdot $ is an infix binary operation such that

$\cdot $ is idempotent: $x\cdot x=x$

$(x\cdot y)\cdot x=x\cdot y$

$y\cdot(x\cdot y)=x\cdot y$

$x\cdot ((x\cdot y)\cdot z)=(x\cdot y)\cdot z$

Remark:

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be directoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(xy)=h(x)h(y)$

### Examples

Example 1:

### Basic results

The relation $x\le y \iff x\cdot y=x$ is a partial order.

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$

### Subclasses

### Superclasses

### References

Trace: » directoids