Differences

This shows you the differences between two versions of the page.

distributive_lattice_ordered_semigroups [2018/10/14 15:55]
jipsen
distributive_lattice_ordered_semigroups [2018/10/14 16:16] (current)
jipsen
Line 21: Line 21:
Example 1: Any collection $\mathbf A$ of binary relations on a set $X$ such that $\mathbf A$ is closed under union, intersection and composition. Example 1: Any collection $\mathbf A$ of binary relations on a set $X$ such that $\mathbf A$ is closed under union, intersection and composition.
-Andreka 1991 AU proves that these examples generate the variety DLOS.+H. Andreka[(Andreka1991)] proves that these examples generate the variety DLOS.
====Basic results==== ====Basic results====
Line 51: Line 51:
$\begin{array}{lr} $\begin{array}{lr}
  f(1)= &1\\   f(1)= &1\\
-  f(2)= &\\ +  f(2)= &6\\ 
-  f(3)= &\\ +  f(3)= &44\\ 
-  f(4)= &\\+  f(4)= &479\\
  f(5)= &\\   f(5)= &\\
-\end{array}$      
-$\begin{array}{lr} 
-  f(6)= &\\ 
-  f(7)= &\\ 
-  f(8)= &\\ 
-  f(9)= &\\ 
-  f(10)= &\\ 
\end{array}$ \end{array}$
- 
====Subclasses==== ====Subclasses====
-  [[...]] subvariety +[[Distributive lattice-ordered monoids]]
- +
-  [[...]] expansion+
 +[[Commutative distributive lattice-ordered semigroups]]
====Superclasses==== ====Superclasses====
-  [[...]] supervariety +[[Lattice-ordered semigroups]]
- +
-  [[...]] subreduct +
====References==== ====References====
-[(Andreka1991> +[(Andreka1991>Hajnal Andreka, \emph{Representations of distributive lattice-ordered semigroups with binary relations}, Algebra Universalis \textbf{28} (1991), 12--25)]
-Hajnal Andr\'eka, \emph{Representations of distributive lattice-ordered semigroups with binary relations}, Algebra Universalis \textbf{28} (1991), 12--25  +
-[[MRreview]] +
-)]+