First-order Theory
A first-order formula is an expression constructed from atomic formulas combined with logical connectives $\mbox{not}, \mbox{and}, \mbox{or}, \Longrightarrow, \iff$ and quantifiers $\forall$, $\exists$ followed by variables.
The first-order theory of a class of structures is the set of first-order formulas that hold in all members of the class.
The decision problem for the first-order theory of a class of structures is the problem with input: a first-order formula of length $n$ (as a string) and output: “true” if the formula holds in all members of the class, and “false” otherwise.
A first-order theory is decidable if there is an algorithm that solves the decision problem, otherwise it is undecidable.
A first-order theory is hereditarily undecidable if every consistent subtheory is undecidable.
The complexity of the decision problem (if known) is one of PTIME, NPTIME, PSPACE, EXPTIME, …
The completeness theorem for first-order logic, due to Kurt Gödel, provides a complete deductive system for first-order logic, and shows that a set of formulas is a first-order theory of a class of structures (of the appropriate language) if and only if it is closed under the 'usual' rules of logical deduction.
Trace: » first-order_theory