Table of Contents

## Idempotent semirings

Abbreviation: **ISRng**

### Definition

An ** idempotent semiring** is a semiring $\mathbf{S}=\langle S,\vee
,\cdot \rangle $ such that

$\vee $ is idempotent: $x\vee x=x$

##### Morphisms

Let $\mathbf{S}$ and $\mathbf{T}$ be idempotent semirings. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\to T$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &6\\ f(3)= &61\\ f(4)= &866\\ f(5)= &\\ f(6)= &\\ \end{array}$

### Subclasses

### Superclasses

### References

Trace: » idempotent_semirings