This is an old revision of the document!

Involutive residuated lattices

Abbreviation: InRL


An involutive residuated lattice is a structure $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \neg\rangle$ of type $\langle 2, 2, 2, 0, 1\rangle$ such that

$\langle A, \vee, \wedge, \neg\rangle$ is an involutive lattice

$\langle A, \cdot, 1\rangle$ is a monoid

$xy\le z\iff x\le \neg(y(\neg z))\iff y\le \neg((\neg z)x)$

Remark: This is a template. If you know something about this class, click on the 'Edit text of this page' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.


Let $\mathbf{A}$ and $\mathbf{B}$ be … . A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x ... y)=h(x) ... h(y)$


An is a structure $\mathbf{A}=\langle A,...\rangle$ of type $\langle ...\rangle$ such that

$...$ is …: $axiom$

$...$ is …: $axiom$


Example 1:

Basic results


Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$


[[...]] subvariety
[[...]] expansion


[[...]] supervariety
[[...]] subreduct


1) F. Lastname, Title, Journal, 1, 23–45 MRreview