# Differences

This shows you the differences between two versions of the page.

mv-algebras [2011/07/17 13:10]
jipsen
mv-algebras [2018/10/20 08:48] (current)
jipsen
Line 72: Line 72:
See [(BP1994)] for details. See [(BP1994)] for details.
+
+====Definition====
+A \emph{lattice implication algebra} is an algebra $\mathbf{A}=\langle A, \to, -, 1\rangle$ such that
+
+$x\to (y\to z) = y\to (x\to z)$
+
+$1\to x = x$
+
+$x\to 1 = 1$
+
+$x\to y = {-}y\to {-}x$
+
+$(x\to y)\to y = (y\to x)\to x$
+
+Remark:
+Lattice implication algebras are term-equivalent to MV-algebras via $x + y = -x\to y$, $0 = -1$, and $\neg x= - x$.
====Examples==== ====Examples====
Line 83: Line 99:
^[[Classtype]]  |variety | ^[[Classtype]]  |variety |
^[[Equational theory]]  |decidable | ^[[Equational theory]]  |decidable |
-^[[Universal theory]]  |decidable |+^[[Universal theory]]  |decidable (FEP[(BF2000)])|
^[[First-order theory]]  | | ^[[First-order theory]]  | |
^[[Locally finite]]  |no | ^[[Locally finite]]  |no |
Line 122: Line 138:
====References==== ====References====
+
+[(BF2000>
+W. J. Blok, I. M. A. Ferreirim,
+\emph{On the structure of hoops},
+Algebra Universalis,
+\textbf{43} 2000, 233--257)]
[(BP1994> [(BP1994>