**This is an old revision of the document!**

## Quasiequational theory

A ** quasiequation** is a universal formula of the form $\phi_1 \mbox{ and } \phi_2 \mbox{ and }\cdots\mbox{ and } \phi_m\ \Longrightarrow\ \phi_0$,
where the $\phi_i$ are atomic formulas. Note that for an algebraic language, the $\phi_i$ are simply equations. For $m=0$, a quasiequation
is just a universal atomic formula.

The ** quasiequational theory** of a class of structures is the set of quasiequations that hold in all members of the class.

The ** decision problem** for the quasiequational theory of a class of structures is the problem with input: a quasiequation
of length $n$ (as a string) and output: “true” if the quasiequation holds in all members of the class, and “false” otherwise.

The quasiequational theory is ** decidable** if there is an algorithm that solves the decision problem, otherwise it is {undecidable}.

The complexity of the decision problem (if known) is one of PTIME, NPTIME, PSPACE, EXPTIME, …

A complete deductive system for quasiequations is given in [A. Selman, ** Completeness of calculi for axiomatically defined classes of algebras**,
Algebra Universalis, \texfbf{2}, 1972, 20–32 MRreview.
Additional information on quasiequations can be found e.g. in
Stanley N. Burris and H.P. Sankappanavar, A Course in Universal Algebra.

Trace: » quasiequational_theory