## Regular semigroups

Abbreviation: **RSgrp**

### Definition

An element $x$ of a semigroup $S$ is said to be ** regular** if exists $y$ in $S$ such that $xyx=x$.

### Definition

A ** regular semigroup** is a semigroups $\mathbf{S}=\langle
S,\cdot \rangle $ such that
each element is regular.

### Definition

A ** regular semigroup** is a structure $\mathbf{S}=\langle
S,\cdot \rangle $, where $\cdot $ is an infix binary operation, called
the

**, such that**

*semigroup product*$\cdot $ is associative: $(xy)z=x(yz)$

each element is ** regular**: $\exists y(xyx=x)$

### Definition

We say that $y$ is an ** inverse** of an element $x$ in a semigroup $S$ if $x=xyx$ and $y=yxy$.

##### Morphisms

Let $\mathbf{S}$ and $\mathbf{T}$ be regular semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:Sarrow T$ that is a homomorphism:

$h(xy)=h(x)h(y)$

### Examples

Example 1: $\langle T_X,\circ\rangle $, the ** full transformation semigroup** of functions on $X$, with composition.

$\langle End(V),\circ\rangle $, the ** endomorphism monoid** of a vector space $V$, with composition.

### Basic results

If $x$ is a regular element of a semigroup (say $x=xyx$), then $x$ has an inverse, namely $yxy$, since $x=x(yxy)x$ and $yxy=(yxy)x(yxy)$.

### Properties

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &3\\ f(3)= &9\\ f(4)= &42\\ f(5)= &206\\ f(6)= &1352\\ f(7)= &10168\\ f(8)= &91073\\ f(9)= &925044 \end{array}$

(the opposite of a semigroup $S$ is identified with $S$ in the table above, see https://oeis.org/A001427)

### Subclasses

### Superclasses

\begin{bibdiv} \begin{biblist}

\bib{MR1455373}{book}{

author={Howie, John M.}, title={Fundamentals of semigroup theory}, series={London Mathematical Society Monographs. New Series}, volume={12}, note={Oxford Science Publications}, publisher={The Clarendon Press Oxford University Press}, place={New York}, date={1995}, pages={x+351}, isbn={0-19-851194-9}, review={\MR{1455373 (98e:20059)}},

}

\end{biblist} \end{bibdiv}

Trace: » regular_semigroups