Table of Contents

## Representable lattice-ordered groups

Abbreviation: **RLGrp**

### Definition

A ** representable lattice-ordered group** (or

**$\ell$**

*representable***) is a lattice-ordered group $\mathbf{L}=\langle L, \vee, \wedge, \cdot, ^{-1}, e\rangle$ that satisfies the identity**

*-group*$(x\wedge y)^2 = x^2\wedge y^2$

##### Morphisms

Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell$-groups. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\rightarrow M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$ and $f(x\cdot y)=f(x)\cdot f(y)$.

Remark: It follows that $f(x\wedge y)=f(x)\wedge f(y)$, $f(x^{-1})=f(x)^{-1}$, and $f(e)=e$

### Examples

### Basic results

Every representable $\ell$-group is a subdirect product of totally ordered groups.

### Properties

Classtype | variety |
---|---|

Equational theory | |

Quasiequational theory | |

First-order theory | hereditarily undecidable ^{1)} ^{2)} |

Locally finite | no |

Residual size | |

Congruence distributive | yes (see lattices) |

Congruence modular | yes |

Congruence n-permutable | yes, $n=2$ (see groups) |

Congruence regular | yes, (see groups) |

Congruence uniform | yes, (see groups) |

Congruence extension property | |

Definable principal congruences | |

Equationally def. pr. cong. | |

Amalgamation property | no ^{3)} |

Strong amalgamation property | no ^{4)} |

Epimorphisms are surjective |

### Finite members

None

### Subclasses

### Superclasses

### References

^{1)}Yuri Gurevic,

**, Algebra i Logika Sem.,**

*Hereditary undecidability of a class of lattice-ordered Abelian groups***6**, 1967, 45–62

^{2)}Stanley Burris,

**, Algebra Universalis,**

*A simple proof of the hereditary undecidability of the theory of lattice-ordered abelian groups***20**, 1985, 400–401, http://www.math.uwaterloo.ca/~snburris/htdocs/MYWORKS/PAPERS/HerUndecLOAG.pdf

^{3)}A. M. W. Glass, D. Saracino and C. Wood,

**, Math. Proc. Camb. Phil. Soc. 95 (1984), 191–195**

*Non-amalgamation of ordered groups*^{4)}Mona Cherri and Wayne B. Powell,

**, International J. Math. & Math. Sci., Vol 16, No 1 (1993) 75–80, http://www.hindawi.com/journals/ijmms/1993/405126/abs/ doi:10.1155/S0161171293000080**

*Strong amalgamation of lattice ordered groups and modules*Trace: » representable_lattice-ordered_groups