Residuated frames for substructural logics, Part IV

Peter Jipsen, Chapman University

joint work with N. Galatos, University of Denver, Colorado,
M. A. Moshier, Chapman University, California and
G. Greco, F. Liang, A. Palmigiano, A. Tzimoulis,
Delft University of Technology, the Netherlands

SYSMICS Summer School

Les Diablerets, Switzerland, August 22 - 26, 2018
Overview

Part III

- Introduction to algebraic proof theory
- Okada lemma
- Decidability of equational theory of RL
- Finite model property
- Finite embeddability property

Part IV

- End of summer school test
- Categorical duality for complete lattices
- Duality for join-semilattices and algebraic frames
- Correspondence theory briefly
- Bunched implication algebras and their frames
- Some open problems
Final Exam for 30000 points

Problem 1. [10000 points] (a) Given reduced polarity frames \(V, W \) how does one construct \((V^+ \times W^+)\)_+?

Hint: consider, e.g., the Boolean algebras \(V = \mathbb{2} \) and \(W = \mathbb{2}^2 \).

(b) If \(V, W \) are residuated frames, how are \(\circ_V \) and \(\circ_W \) combined to get the ternary relation for \((V^+ \times W^+)\)_+?

Problem 2. [20000 points] The coalesced ordinal sum \(L \oplus M \) of two bounded lattices \(L, M \) is given by the disjoint union \((L \setminus \{\top\}) \cup M\) with the partial order given by \(\leq_{L \setminus \{\top\}} \cup \leq M \cup (L \setminus \{\top\}) \times M\).

(a) Draw the ordinal sum when \(L = \mathbb{2}^2 \) and \(M = \mathbb{2}^3 \).

(b) Find the polarity frame of this 11-element lattice.

(c) For any bounded perfect lattices \(L, M \) how is \((L \oplus M)_+\) constructed from \(L_+ \) and \(M_+\)?

(d) If \(L, M \) are integral residuated lattices, define \(\circ, E \) on \((L \oplus M)_+\) in a natural way to get a residuated frame. Is integrality needed?

1000 bonus points for any mistake you report in the notes.
Frame morphisms

Complete lattices with complete homomorphisms form a category

What are the appropriate morphisms for polarity frames?

For a frame \(W = (W, W', N) \) the relation \(N \) is an identity morphism that induces the identity map \(\gamma = N \downarrow N \uparrow \) on the closed sets

A frame morphism \(R : V \rightarrow W = (V, W', R) \) is a relation \(R \subseteq V \times W' \) such that \(N_v \downarrow N_v R \downarrow = R \downarrow = R \downarrow N_w \uparrow N_w \uparrow \)

or equivalently \(R \uparrow N_v \downarrow N_v \uparrow = R \uparrow = N_w \uparrow N_w \downarrow R \uparrow \)

In either case we say that \(R \) is compatible
Compatible morphisms \equiv^d meet-semilattice homomorphisms

Lemma. If R is compatible then $R \downarrow N^\uparrow_W : W^+ \rightarrow V^+$ preserves \bigcap

Proof: Let $\{A_k : k \in K\}$ be a family of Galois closed sets of W

Since $R \downarrow N^\uparrow_W N^\downarrow_W = R^\downarrow$,

$$R \downarrow N^\uparrow_W \bigcap_{k \in K} A_k = R \downarrow \bigvee_{k \in K} N^\uparrow_W A_k = R \downarrow N^\uparrow_W N^\downarrow_W \bigcup_{k \in K} N^\uparrow_W A_k = R \downarrow \bigcup_{k \in K} N^\uparrow_W A_k$$

$$= \bigcap_{k \in K} R \downarrow N^\uparrow_W A_k$$

because $R \downarrow \bigcup_{k \in K} B_k = \bigcap_{k \in K} R \downarrow B_k$ always

The result is in V^+ since $R \downarrow = N^\downarrow_V N^\uparrow_V R^\downarrow$ \(\square\)
More examples

Urquhart and Hartung only define duals of surjective lattice homomorphisms. Here is the dual of a non-surjective homomorphism:
The category of polarity frames

Theorem. [Moshier 2012] (i) The collection \(\text{PFrm} \) of all frames with compatible relations as morphisms is a category

If \(S : U \rightarrow V \) and \(R : V \rightarrow W \) then composition is given by

\[
x S \vdash R y \iff x \in S^\downarrow N^\uparrow_V R^\downarrow \{y\}
\]

(ii) The category \(\text{PFrm} \) is dual to the category \(\text{INF} \) of complete semilattices with completely meet-preserving homomorphisms

The adjoint functors are \(+ : \text{PFrm} \rightarrow \text{INF} \) and \(W(-) : \text{INF} \rightarrow \text{PFrm} \)

On morphisms, \(R^+ = R^\downarrow N^\uparrow_W : W^+ \rightarrow V^+ \) and for an \(\text{INF} \) morphism \(h : L \rightarrow M \), we have \(W_h = \{(x,y) \in M \times L : x \leq h(y)\} \)
Lattice compatible morphisms

Lemma: $R \downarrow N_w \uparrow$ preserves \lor iff there exists a compatible relation $R_* : W \to V'$ such that $R \downarrow N_w \uparrow = N_v \downarrow R_* \uparrow$ (call R lattice compatible)

Theorem: The category LP Frm of all frames with lattice compatible relations as morphisms is dual to the category CLat of complete lattices with complete lattice morphisms.

Lemma:
(i) $R : V \to W$ is a monomorphism in P Frm iff $R \downarrow R \uparrow = N_v \downarrow N_v \uparrow$

(ii) $R : V \to W$ is a epimorphism in P Frm iff $R \uparrow R \downarrow = N_w \uparrow N_w \downarrow$

Note that every morphism has itself as epi-mono factorization

\[
\begin{array}{ccc}
V' & \xrightarrow{R} & W' \\
\downarrow & R \parallel & \downarrow \\
V & \xrightarrow{R} & W \\
\downarrow & \equiv & \downarrow \\
N_v & \equiv & N_w
\end{array}
\]
Reduced frames

\textbf{LP Frm} is “much larger” than \textbf{CLat} since many different (but isomorphic) frames represent the same lattice.

For a finite lattice \(L \) the \textbf{reduced frame} \((J(L), M(L), \leq)\) is isomorphic to \(W_L \).

For finite \(L \) the reduced frame can be \textbf{logarithmic} in size of \(L \).

E.g. a finite BA \(B \) has \((At(B), coAt(B), \leq) \cong (At(B), At(B), \neq)\) as reduced frame.
Morphisms between Boolean polarity frames

On complete and atomic Boolean algebras, any relation is a P Frm morphism

So there are $2^{2 \cdot 3} = 64$ meet-homomorphisms from V to W

For the example above, only six relations are LP Frm morphisms
Overview of Dualities

<table>
<thead>
<tr>
<th>Algebras w. homs</th>
<th>Spaces w. “cont” maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{CABool})</td>
<td>(\mathbf{Sets})</td>
</tr>
<tr>
<td>(\mathbf{Bool})</td>
<td>(\mathbf{Stone})</td>
</tr>
<tr>
<td>(\mathbf{CPerfDLat})</td>
<td>(\mathbf{Poset})</td>
</tr>
<tr>
<td>(\mathbf{BDLat})</td>
<td>(\text{Priestley or Spectral})</td>
</tr>
<tr>
<td>(\text{INF or SUP})</td>
<td>(\mathbf{P Frm}) (Moshier)</td>
</tr>
<tr>
<td>(\mathbf{CLat})</td>
<td>(\mathbf{LP Frm})</td>
</tr>
<tr>
<td>(\mathbf{JSLat}_\perp)</td>
<td>(\mathbf{AlgP Frm})</td>
</tr>
<tr>
<td>(\mathbf{Lat}) w. surj. homs</td>
<td>(\text{Urquhart 78/Hartung 92})</td>
</tr>
</tbody>
</table>
Algebraic Frames

\(W = (W, W', N) \) is an algebraic polarity frame if
\(N^{-1} N^{-1} A = \bigcup \{ N^{-1} N^{-1} F : F \subseteq_\omega A \} \) for all \(A \subseteq W \)

\(\iff \) \(N^{-1} N^{-1} \) preserves directed unions

AlgPFrnm is the class of all algebraic polarity frames

\(R : V \to W \) is an AlgPFrnm morphism if \(R^{-1} N^{-1} \) preserves directed unions

The compact sets are \(\mathcal{K}(W) = \{ N^{-1} N^{-1} F : F \subseteq_\omega W \} \)

Theorem The category \(\text{JSLat}_\bot \) is dual to AlgPFrnm. The adjoint functors are \(\mathcal{K} : \text{ACxt} \to \text{JSLat}_\bot \) and \(W_{\mathcal{I}} : \text{JSLat}_\bot \to \text{ACxt} \), where
\(W_{\mathcal{I}, L} = (L, \mathcal{I} L, N) \) and \(N = \{ (a, D) : a \in D \} \).

On morphisms, \(\mathcal{K}(R) = R^{-1} N^{-1} : \mathcal{K}(Y) \to \mathcal{K}(X) \) and for a \(\text{JSLat}_\bot \) morph. \(h : L \to M \), \(W_{\mathcal{I}, h} = \{ (a, D) \in M \times \mathcal{I} L : h^{-1}[a] \cap D \neq \emptyset \} \)
Frames of idempotent Join-semirings

Let \(W \) be an algebraic frame. A relation \(\circ \subseteq W^3 \) is called **algebraic** if for all \(A, B \in \mathcal{K}(W) \) the set \(N^\downarrow N^\uparrow (A \circ B) \) is also in \(\mathcal{K}(W) \).

An **idempotent semiring frame** is of the form \((W, W', N, \circ, E)\) such that \((W, W', N)\) is an algebraic polarity frame, \(\circ, E\) are an algebraic ternary and unary relation on \(W\), the closure operator \(\gamma_N\) is a nucleus, i.e., \(\gamma_N(X) \circ \gamma_N(Y) \subseteq \gamma_N(X \circ Y)\), and for all \(x, y, z \in W\) we have

\[
N^\uparrow((x \circ y) \circ z) = N^\uparrow(x \circ (y \circ z)) \quad \text{and}
\]

\[
N^\uparrow(x \circ E) = N^\uparrow\{x\} = N^\uparrow(E \circ x).
\]
Idempotent Matrix Semirings

Given a semiring L, let $M_n(L)$ be the semiring of all $n \times n$ matrices with entries from L.

This object has $|L|^{n^2}$ many elements, but for idempotent semirings the frame \mathbf{W} of $M_n(L)$ is much smaller since it can be constructed from n^2 disjoint copies of the idempotent semiring frame $\mathbf{V} = \mathbf{W}_I, L$.

Let $W = \{(i, j, a) : a \in V, i, j = 1, \ldots, n\}$ and $W' = \{(i, j, a) : a \in V', i, j = 1, \ldots, n\}$

Define $(i, j, a) N_W (i', j', a') \iff i \neq i'$ or $j \neq j'$ or $aN_V a'$

$E = \{(i, i, a) : a \in E, i = 1, \ldots, n\}$, and

$(i, j, a) \circ (k, l, b) = \{(i, l, c) : j = k$ and $c \in a \circ b\}$

Then (W, W', N_W, \circ, E) is the frame of the matrix semiring $M_n(L)$
Counting finite reduced separating frames

A frame is **reduced** if $\gamma(\gamma(x) - \{x\}) \neq \gamma(x)$ and same for γ'

For any perfect lattice $(J(L), M(L), \leq)$ is always **reduced**

How many reduced frames are there with $|W| = m$ and $|W'| = n$?

$m = 0, n = 0$: $W_1 = (\emptyset, \emptyset, \emptyset)$, $W^+ = \text{trivial lattice}$

$m = 0, n = 1$: no reduced frame

$m = 1, n = 1$: $W_2 = (\{0\}, \{0\}, \emptyset)$, $W^+ = 2$-element lattice

$m = 1, n = 2$: no reduced frame

$m = 2, n = 2$: $W_3 = (\{0,1\}, \{0,1\}, \{(0,0)\})$, $W^+ = 3$-elt lattice

$W_4 = (\{0,1\}, \{0,1\}, \{(0,0), (1,1)\})$, $W^+ = 4$-element lattice
Counting finite reduced polarity frames

There are no reduced frames for $m = 2, n = 3$

Number of reduced separating frames (up to isomorphism)

<table>
<thead>
<tr>
<th></th>
<th>$n = 3$</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 3$</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>45</td>
<td>50</td>
<td>25</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>50</td>
<td>717</td>
<td>2241</td>
<td>3670</td>
<td>3598</td>
<td>2181</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>25</td>
<td>2241</td>
<td>37535</td>
<td>266178</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>4</td>
<td>3670</td>
<td>266178</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>3598</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2181</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

(semi)distributive and selfdual lattices lie along the diagonal
Residuated frames

Recall: a **residuated lattice** is an algebra $A = (A, \lor, \land, \cdot, \setminus, /, 1)$ such that (A, \lor, \land) is a **lattice**, $(A, \cdot, 1)$ is a **monoid** and for all $x, y, z \in A$ $xy \leq z \iff y \leq x\setminus z \iff x \leq z/y$.

A **residuated frame** is a structure $W = (W, W', N, \circ, \setminus, //, E)$ such that (W, W', N) is a polarity frame, $\circ \subseteq W^3$, $\setminus \subseteq W \times W' \times W$, $//$ $\subseteq W' \times W^2$ and for all $x, y, z \in W$ and $w \in W'$

1. $(x \circ y)Nw \iff yN(x\setminus w) \iff xN(w//y)$ $(\circ$ is **nuclear**).
2. $N^\uparrow((x \circ y) \circ z) = N^\uparrow(x \circ (y \circ z))$
3. $N^\uparrow(E \circ x) = N^\uparrow\{x\} = N^\uparrow(x \circ E)$

Note: $x \circ y = \{z : \circ(x, y, z)\}$, $X \circ Y = \{z : \circ(x, y, z), x \in X, y \in Y\}$

Note that 1.-3. can be written as 1st-order formulas on W

1. **corresponds** to \circ_γ being a residuated operation on W^+
Morphisms for residuated frames

Let V, W be residuated frames. A relation $R \subseteq W \times W'$ is a morphism $R : V \to W$ if R is **lattice compatible** and

1. $R \downarrow N \uparrow (x \circ_{W} y) = (R \downarrow N \uparrow \{x\}) \circ_{V} (R \downarrow N \uparrow \{y\})$
2. $R \downarrow N \uparrow (x \setminus_{W} N \downarrow y) = (R \downarrow N \uparrow \{x\}) \setminus_{V} (R \downarrow \{y\})$
3. $R \downarrow N \uparrow (N \downarrow x /_{W} y) = (R \downarrow \{x\}) /_{V} (R \downarrow N \uparrow \{y\})$
4. $R \downarrow N \uparrow (E_{W}) = \gamma(E_{V})$

Theorem. The category of reduced separating residuated frames and morphisms is dually equivalent to the category of complete perfect residuated lattices and homomorphisms.
Correspondence examples

Recall:

A is **integral** if it satisfies $x \leq 1$

A is **commutative** if it satisfies $xy = yx$

A is **modular** if it satisfies $x \leq z \implies (x \lor y) \land z = x \lor (y \land z)$

Let W be a residuated frame. Then W^+ is **integral** iff

$$\gamma(E_W) = W \text{ iff } \forall x \in W, y \in W' (\forall z \in E_W (zNy) \implies xNy)$$

W^+ is **commutative** iff $N^+(x \circ y) = N^+(y \circ x)$. Translate this to a first-order formula on W.

Peter Jipsen (Chapman University) — SYSMICS Summer School — August 22 - 26, 2018
Modularity is not canonical

First look at how the MacNeille completion of a distributive lattice can fail to be modular [N. Funayama 1944]

Let L be the following sublattice of $(\mathbb{N} \oplus \mathbb{N}^d)^2 \times 2$
The canonical extension of L

L^δ
Modularity is not canonical

Can we find a pentagon in M^δ for some modular lattice M?
No simple proof known; here is John Harding’s 1998 argument

Let M be the modular lattice of finite and cofinite dimensional subspaces of an infinite dimensional Hilbert space.

[Von Neumann 1936] A continuous geometry is a complete modular lattice L with a function $D : L \to [0,1]$ that has finite range or is surjective and

if $a < b$ then $D(a) < D(b)$ \hspace{1cm} $D(a \lor b) + D(a \land b) = D(a) + D(b)$

$D(a) = 0$ if and only if $a = 0$, \hspace{1cm} $D(a) = 1$ if and only if $a = 1$, and D agrees on elements with a common complement.

[Kaplansky 1955] Any orthocomplemented complete modular lattice is a continuous geometry

So if M^δ is modular, it must be a continuous geometry

But M^δ has infinitely many atoms, which leads to a contradiction.
Generalized bunched implication algebras

A generalized bunched implication algebra or GBI-algebra
\((A, \land, \lor, \to, \top, \bot, \cdot, 1, \setminus, /)\) is a residuated lattice \((A, \land, \lor, \cdot, 1, \setminus, /)\) such that \((A, \land, \lor, \to, \top, \bot)\) is a Heyting algebra, i.e., \(\top, \bot\) are top and bottom elements and

\[x \land y \leq z \iff y \leq x \to z \]

or equivalently the following 2 identities hold

\[x \leq y \to ((x \land y) \lor z) \quad x \land (x \to y) \leq y \]

Intuitionistic negation is \(\neg x = x \to \bot\), linear negation is \(\sim x = x \setminus \neg 1\).

Relation algebras are a subvariety of GBI:

\(\text{RA} = \text{GBI}+ \sim x = \neg 1/x, \sim \sim x = x, \neg \neg x = x, \neg \sim (xy) = (\neg \sim y)(\neg \sim x) \)

Bunched implication algebras or BI-algebras are commutative GBI-algebras
Distributive residuated frames

A **distributive residuated frame** is of the form
\[W = (W, W', N, \circ, \langle, \rangle, \wedge, \lor, \lhd) \], where \(\circ, \lhd \subseteq W^3 \),
\(N \subseteq W \times W' \) is an \(\circ \)-nuclear relation with respect to \(\langle, \rangle \) and
distributively \(\wedge \)-nuclear with respect to \(\wedge, \lhd \), which means:

\[x \wedge y \lhd z \iff y \lhd x \circ z \iff x \circ z \lhd y \]

and it satisfies the following implications,

\[
\begin{align*}
& x \wedge (y \wedge w) \lhd Nz \\
& \quad \Rightarrow (x \wedge y) \wedge w \lhd Nz \quad [\wedge a] \\
& x \wedge y \lhd Nz \\
& \quad \Rightarrow y \lhd x \circ Nz \quad [\wedge e] \\
& x \lhd y \lhd Nz \\
& \quad \Rightarrow x \lhd y Nz \quad [\wedge i] \\
& x \lhd x \lhd Nz \\
& \quad \Rightarrow x \lhd x Nz \quad [\wedge c]
\end{align*}
\]
Distributive Gentzen frames

A distributive Gentzen frame, is a pair \((W, B)\) where

- \(W = (W, W', N, \circ, \backslash, \slash, \{\varepsilon\}, \land, \lor, \iff)\) is a distributive frame, with \(\circ\) and \(\land\) binary operations,
- \(B\) is a partial algebra,
- \((W, \circ, \varepsilon, \land)\) is an associative bi-groupoid with unit for \(\circ\) generated by \(B \subseteq W\),
- there is an injection of \(B\) into \(W'\) (under which \(B\) is identified with a subset of \(W'\)) and
- \(N\) satisfies “the standard list of Gentzen rules”

Theorem

[Galatos and J. 2017] Distributive residuated lattices and GBI-algebras have cut-free Gentzen systems, and the same holds for subvarieties defined by \(1, \circ, \lor\)-rules.

Distributive residuated lattices and subvarieties defined by \(1, \circ, \lor\)-rules that do not increase complexity have the finite model property.
Open Problems

Give an elementary proof that modularity is not canonical.

Axiomatize the variety generated by canonical extensions of MV-algebras.

Is join-semidistributivity canonical?

Find a sequent calculus that decides equations for GBI-algebras by proof search.

Lattice-ordered pregroups are ℓ-monoids $(A, \lor, \land, \cdot, 1)$ with two more unary operations ℓ, r that satisfy

$x^\ell x \leq 1 \leq xx^\ell$ and $xx^r \leq 1 \leq x^r x$. Are the lattice reducts distributive? (They are known to be semidistributive.)

Thanks!